Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multi-Scale Structuring and Band Alignment by FeTe2 Incorporation.

Title Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multi-Scale Structuring and Band Alignment by FeTe2 Incorporation.
Authors W.Ho Shin; J.Wook Roh; B. Ryu; H.Jung Chang; H.Sik Kim; S. Lee; W.S. Seo; K. Ahn
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b18451
Abstract

It has been in difficulty in forming well-distributed nano- and meso-sized inclusions in a Bi2Te3-based matrix and thereby realizing no degradation of carrier mobility at interfaces between matrix and inclusions for high thermoelectric performances. Herein, we successfully synthesize multi-structured thermoelectric Bi0.4Sb1.6Te3 materials with Fe-rich nano-precipitates and sub-micron sized FeTe2 inclusions by a conventional solid state reaction followed by melt-spinning and spark plasma sintering that could be a facile preparation method for scale-up production. This study presents a bismuth antimony telluride based thermoelectric material with a multi-scale structure whose lattice thermal conductivity is drastically reduced with a minimal degradation on its carrier mobility. This is possible because a carefully chosen FeTe2 incorporated in a matrix allows its interfacial valence band with the matrix to be aligned, leading to a significantly improved p-type thermoelectric power factor. Consequently, an impressively high ZT of 1.52 is achieved at 396 K for p-type Bi0.4Sb1.6Te3-8 mol.% FeTe2, which is 43 % enhancement in ZT compared to the pristine Bi0.4Sb1.6Te3. This work demonstrates not only the effectiveness of multi-scale structuring for lowering lattice thermal conductivities, but also the importance of interfacial band alignment between matrix and inclusions for maintaining high carrier mobilities when designing high performance thermoelectric materials.

Citation W.Ho Shin; J.Wook Roh; B. Ryu; H.Jung Chang; H.Sik Kim; S. Lee; W.S. Seo; K. Ahn.Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multi-Scale Structuring and Band Alignment by FeTe2 Incorporation.. ACS Appl Mater Interfaces. 2018. doi:10.1021/acsami.7b18451

Related Elements

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Related Forms & Applications