TC11 Titanium Alloy Powder
ORDER
Product | Product Code | ORDER | SAFETY DATA | Technical data |
---|---|---|---|---|
TC11 Titanium Alloy Powder | TI-ALLY-01-P | Pricing Add to cart only | SDS > | Data Sheet > |
TC11 Titanium Alloy Powder Properties (Theoretical)
Compound Formula | Ti-6.5Al-3.5Mo-1.5Zr-0.3Si |
---|---|
Appearance | Gray powder |
Melting Point | N/A |
Boiling Point | N/A |
Density | 2.1-2.4 g/cm3 |
Solubility in H2O | N/A |
Tensile Strength | 1080±50 MPa |
Specific Heat | 460 J/kg |
TC11 Titanium Alloy Powder Health & Safety Information
Signal Word | N/A |
---|---|
Hazard Statements | N/A |
Hazard Codes | N/A |
Risk Codes | N/A |
Safety Statements | N/A |
Transport Information | N/A |
About TC11 Titanium Alloy Powder
American Elements manufactures high performance water and gas atomized TC11 Titanium Alloy Powder optimized for additive manufacturing (3D printing, rapid prototyping). Our spherical free-flowing metal powders are engineered to be agglomerate-free with extremely low oxygen and carbon content, consistent micro-structure and tightly controlled morphology and particle size distributions which enable the production of large complex structures without sacrificing the material’s integrity. In addition to our extensive catalog of stock metals and alloys, we also manufacture custom alloy powders with novel compositions in support of developing innovations in the field of additive manufacturing.
Our rigorous quality assurance/quality control testing combined with our proficiency in formulation and process development translates into increased speed to market for our customers. As a trusted world leader in advanced atomized metal powders and custom material solutions, American Elements has the technical expertise to provide guidance in the selection of the most appropriate materials and production technologies for the unique requirements of our customers in the aerospace, medical devices, electronics, lighting and a growing list of other industries.
Synonyms
Titanium based aluminum-molybdenum-zirconium-silicon
Chemical Identifiers
Linear Formula | Ti-6.5Al-3.5Mo-1.5Zr-0.3Si |
---|---|
Pubchem CID | N/A |
MDL Number | N/A |
EC No. | N/A |
Beilstein/Reaxys No. | |
Chemical Formula | |
Molecular Weight | |
Standard InchI | |
Appearance | |
Melting Point | |
Boiling Point | |
Density |
Customers For TC11 Titanium Alloy Powder Have Also Viewed
Related Applications, Forms & Industries for TC11 Titanium Alloy Powder
Packaging Specifications
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.
Related Elements
See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed.
Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.
See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. The number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.
It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.
See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. The number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon.
Silica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.
See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. The titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table.
Titanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.
See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. The number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate).
Zirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.
Recent Research
TODAY'S TOP DISCOVERY™!
Los Angeles, CA