Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device.

Title Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device.
Authors Q. Zhou; Y. Lin; K. Zhang; M. Li; D. Tang
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2017.10.027
Abstract

A novel magnetic controlled photoelectrochemical (PEC) sensing system was designed for sensitive detection of prostate-specific antigen (PSA) using reduced graphene oxide-functionalized BiFeO3 (rGO-BiFeO3) as the photoactive material and target-triggered hybridization chain reaction (HCR) for signal amplification. Remarkably enhanced PEC performance could be obtained by using rGO-BiFeO3 as the photoelectrode material due to its accelerated charge transfer and improved the visible light absorption. Additionally, efficient and simple operation could be achieved by introducing magnetic controlled flow-through device. The assay mainly involved in anchor DNA-conjugated magnetic bead (MB-aDNA), PSA aptamer/trigger DNA (Apt-tDNA) and two glucose oxidase-labeled hairpins (H1-GOx and H2-GOx). Upon addition of target PSA, the analyte initially reacted with the aptamer to release the trigger DNA, which partially hybridized with the anchor DNA on the MB. Thereafter, the unpaired trigger DNA on the MB opened the hairpin DNA structures in sequence and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix with numerous GOx enzymes on it. Subsequently, the enzymatic product (H2O2) generated and consumed the photo-excited electrons from rGO-BiFeO3 under visible light irradiation to enhance the photocurrent. Under optimal conditions, the magnetic controlled PEC sensing system exhibited good photocurrent responses toward target PSA within the linear range of 0.001 - 100ng/mL with a detection limit of 0.31pg/mL. Moreover, favorable selectivity, good stability and satisfactory accuracy were obtained. The excellent analytical performance suggested that the rGO-BiFeO3-based PEC sensing platform could be a promising tool for sensitive, efficient and low cost detection of PSA in disease diagnostics.

Citation Q. Zhou; Y. Lin; K. Zhang; M. Li; D. Tang.Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device.. Biosens Bioelectron. 2018;101:146152. doi:10.1016/j.bios.2017.10.027

Related Elements

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Related Forms & Applications