Silver Tin Selenide Sputtering Target

Linear Formula:

AgSnSe2

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Silver Tin Selenide Sputtering Target
AG-SNSE-01-ST
Pricing > SDS > Data Sheet >

Silver Tin Selenide Sputtering Target Properties (Theoretical)

Compound Formula AgSnSe2
Molecular Weight 384.5
Appearance Target
Melting Point N/A
Boiling Point N/A
Density 6.98 g/cm3
Solubility in H2O N/A

About Silver Tin Selenide Sputtering Target

American Elements specializes in producing high purity Silver Tin Selenide Sputtering Targets with the highest possible density High Purity (99.99%) Silver Tin Selenide Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard sputtering targets for thin film deposition are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Rotary (cylindrical), round, rectangular, square, ring, annular, oval, "dog-bone" and other shaped targets are available in standard, custom, and research sized dimensions. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. Please request a quote above for more information on lead time and pricing.

Silver Tin Selenide Sputtering Target Synonyms

AgSnSe3, Ag0.5Sn0.5Se

Chemical Identifiers

Linear Formula AgSnSe2
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

TODAY'S TOP DISCOVERY!

September 07, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Osaka University researchers discover stacking molecules like plates improves organic solar device performance

Osaka University researchers discover stacking molecules like plates improves organic solar device performance