CLYC:Ce Scintillation Crystal

Cerium-doped Cesium Lithium Yttrium Chloride

Linear Formula:

Ce:Cs2LiYCl6

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Cerium-doped Cesium Lithium Yttrium Chloride (CLYC) Crystal
CSLI-YCL-01-XTAL.CE
Pricing > SDS > Data Sheet >

CLYC:Ce Scintillation Crystal Properties (Theoretical)

Compound Formula Cs2LiYCl6:Ce
Molecular Weight 78.08
Appearance Crystalline solid
Melting Point 640 °C
Boiling Point N/A
Density 3.31 g/cm3
Solubility in H2O Hygroscopic, water soluble
Crystal Phase / Structure Cubic
Specific Heat . 0.379 J/(g·K)
Thermal Conductivity 0.0067 W/(cm·K) (50°C)
Thermal Expansion .34.34x10-6/°C (30 °C)

CLYC:Ce Scintillation Crystal Health & Safety Information

Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes N/A
Precautionary Statements P261-P280-P305+P351+P338-P304+P340-P405-P501
Flash Point Not Applicable
Risk Codes N/A
Safety Statements N/A
RTECS Number N/A
Transport Information NONH for all modes of transport
WGK Germany NONH
GHS Pictograms

About CLYC:Ce Scintillation Crystal

Ce:CYLC (Cerium-activated Cs2LiYCl6) is a dual mode gamma-neutron detection scintillation crystal systems for nuclear imaging applications such as medical imaging and oil well detection.

CLYC:Ce Scintillation Crystal Synonyms

Cesium Lithium Yttrium Chloride, Cerium-activated Cs2LiYCl6, CLYC(Ce), Ce:CLYC, Cs2LiYCl6:Ce, CLC:Ce scintillator, CLYC SiPM, Cs2LiYCl6(Ce)

Chemical Identifiers

Linear Formula Ce:Cs2LiYCl6
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Cesium

See more Cesium products. Cesium (or Caesium) (atomic symbol: Ce, atomic number: 55) is a Block S, Group 1, Period 6 element with an atomic weight of 132.9054519. The number of electrons in each of Cesium's shells is 2, 8, 18, 18, 8, 1 and its electron configuration is [Xe]6s1. Cesium Bohr ModelThe cesium atom has a radius of 265 pm and a Van der Waals radius of 343 pm. Cesium is a member of the alkali group of metals. It is one of three metals that occur as a liquid at room temperature, the others being mercury and gallium. Elemental CesiumCesium's main commercial source is pollucite ore; however, it is also found in beryl, avogadrite, pezzottaite, and londonite. Cesium was discovered by Robert Bunsen and Gustav Kirchhoff in 1860 and first isolated by Carl Setterberg in 1882. In its elemental form, cesium has a silvery gold appearance. The word Cesium originates from the Latin word "caesius," meaning "sky blue," which refers to the vibrant blue lines in its spectrum.

Chlorine

Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

TODAY'S TOP DISCOVERY!

September 16, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
University of Waterloo researchers use 3D imaging to observe micro- and nanoplastic degradation with unprecedented detail

University of Waterloo researchers use 3D imaging to observe micro- and nanoplastic degradation with unprecedented detail